# Additional Reactions of Sugar Oximes, Nitrile Oxides and Hydroximolactones 

Masataka Yokoyama, * Keiko Sujino, Masakazu Irie, Norimasa Yamazaki, Takuya Hiyama, Naoyuki Yamada and Hideo Togo<br>Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Chiba City 260, Japan


#### Abstract

Reaction of sugar oximes with dimethyl acetylenedicarboxylate gave chiral isoxazolines bearing a sugar moiety. Sugar nitrile oxides reacted with 1,3-dipolarophiles to afford the corresponding isoxazoles bearing a sugar moiety. Sugar hydroximolactones underwent a tandem Michael addition-1,3-dipolar cycloaddition by reaction with Michael acceptors to give the corresponding spiro sugar isoxazolidines. An X-ray crystallographic structure determination of ( $3 S, 5 R, 7 R, 8 R, 9 R$ )-3-acetyl-8,9-isopropylidenedioxy-1-(3-oxobutyl)-7-trityloxymethyl-2,6-dioxa-1-azaspiro[4.4]nonane has been performed.


Recently, considerable attention has been given to unnatural nucleosides ever since the appearance of Acyclovir, Ribavirin, and AZT as potential antiviral agents. ${ }^{1}$ As part of our study directed towards the synthesis of pharmaceutically important compounds, ${ }^{2}$ we intended to develop the synthesis of new type of nucleosides. From this viewpoint we studied the reactions of sugar oximes. In this paper we report some of their reactions: (1) Reaction of sugar oximes with dimethyl acetylenedicarboxylate. (2) 1,3-Dipolar cycloaddition with sugar nitrile oxides. (3) Reaction of sugar hydroximolactones.

## Results and Discussion

1. Reaction of Sugar Oximes with Dimethyl Acetylenedi-carboxylate.--The asymmetric synthesis of isoxazolines by utilizing sugars as chiral auxiliaries has been investigated extensively by Vasella and co-workers. ${ }^{3}$ We intended to synthesize a chiral isoxazoline glucoside starting from 2,$3 ; 4,6$ -di- $O$-(tetraisopropyldisiloxane-1,3-diyl)-D-glucose oxime 1 and dimethyl acetylenedicarboxylate (DMAD). Compound 1 was allowed to react with DMAD via a nitrone intermediate 2 to give the corresponding tetraisopropyldisiloxanediyl (TIPDS)protected isoxazoline glucoside 3 in $87 \%$ yield ( $\alpha / \beta 3 / 7$ ). Furthermore, the $x$ and $\beta$ isomers could each be separated into two isomers epimeric at $\mathrm{C}-3$ of the isoxazoline. The main products consisted of $\alpha$ and $\beta$ glucosides in 20 and $53 \%$ yield, respectively. The $\alpha$-glucoside was treated with $5 \% \mathrm{HCl}-\mathrm{MeOH}$ to afford the corresponding isoxazoline derivative 4 as the ( - )-form $\left\{[\alpha]_{\mathrm{D}}-147^{\circ}\left(c 0.48, \mathrm{CHCl}_{3}\right)\right\}$ in $51 \%$ yield, while the $\beta$-glucoside gave the $(+)$-form of compound $4\left\{[\alpha]_{\mathrm{D}}+147^{\circ}(c\right.$ $0.48, \mathrm{CHCl}_{3}$ ) , in $61 \%$ yield (Scheme 1 ). Compound 3 could be easily deprotected by treatment with tetrabutylammonium fluoride. Thus, the chiral isoxazoline glucosides can be synthesized by the present procedure.

Next, D-ribose was employed in this reaction as a chiral auxiliary. 2,3-O-Isopropylidene-5-O-trityl-D-ribose oxime 5 was treated with DMAD in the same way as before. An expected 2,3- $O$-isopropylidene-5- $O$-tritylribofuranosyl isoxazoline 7 was obtained in $98 \%$ yield ( $\alpha$ riboside: 52 and $5.5 \% ; \beta$ riboside: 27 and $13.5 \%$ ) via the corresponding nitrone 6 . The main $\alpha$ and $\beta$ ribosides had the specific rotatory powers of $+113^{\circ}(c 0.50$, $\mathrm{CHCl}_{3}$ ) and $-44^{\circ}\left(c 0.52, \mathrm{CHCl}_{3}\right)$, respectively.

Interestingly, the $x$ and $\beta$ ribosides were detritylated by $\mathrm{FeCl}_{3}$ to give the same 2-(2,3-O-isopropylidene- $\beta$-D-ribosyl)-3,4,5-tris(methoxycarbonyl)-3-methoxycarbonylmethyl-2,3-dihydroisoxazole 8 in $79^{\circ}$, yield based on the $\beta$-form. Compound 8 was then treated with $5 \% \mathrm{HCl}-\mathrm{MeOH}$ to afford the $(-)$-form of compound 4 in $69^{\circ} \%$ yield (Scheme 2 ). This fact shows that the


16


3

2

$\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
TIPDS $=-\mathrm{Si}\left(\operatorname{Pr}_{2}^{\mathrm{i}}\right)-\mathrm{O}-\mathrm{Si}\left(\mathrm{Pr}_{2}\right)_{2}{ }^{-}$
4

Scheme 1 Reagents: i, DMAD; ii, $\mathrm{HCl}, \mathrm{MeOH}$
$\alpha$-riboside $7 \alpha$ changes to the $\beta$ riboside $7 \beta$ in the detritylation step and that the carbon- 3 atoms in the isoxazoline ring of compounds $7 \boldsymbol{\alpha}$ and $7 \boldsymbol{\beta}$ have the same stereochemistry. Judging from the isolated products, the higher $\alpha$-selection $(\alpha / \beta 3 / 2)$ of oxime 5 compared with that of oxime $1(\alpha / \beta 3 / 7)$ seems to stem mainly from the effect of bulky $5-O$-trityl group. The mechanism of chiral induction is unclear because the absolute configurations of products 4 are not known for certain.

The isoxazolines 4 obtained in this reaction are stable in $\mathrm{CHCl}_{3}$ solution at room temperature for a week and can be stored in a freezer without decomposition for several months. Glucoside $\mathbf{3}$ and ribosides 7 and 8 are very stable compounds. The structure of compounds $\mathbf{3 , 7}$ and $\mathbf{8}$ was determined by their coupling constants and NOE NMR data. In the above two reactions, starting compounds 1 and 5 were found to exist in both oxime forms (1a and 5a) and hydroxylamine forms (1b and 5b) by ${ }^{1} \mathrm{H}$ NMR data.
2. 1,3-Dipolar Cycloaddition with Sugar Nitrile Oxides. ${ }^{4}$-In connection with our recent studies ${ }^{5}$ on the synthesis of acyclonucleosides which have received considerable attention as anti-


Scheme 2 Reagents: i, DMAD; ii, $\mathrm{FeCl}_{3}$; iii, $\mathrm{HCl}, \mathrm{MeOH}$
viral drugs, ${ }^{6}$ we carried out the generation of a ribose nitrile oxide 9 which would afford the corresponding acyclonucleosides by the reaction with various 1,3 -dipolarophiles.

A mixture of 2,3-O-isopropylidene-5-O-trityl-D-ribose oxime 5a and DMAD was allowed to react with $5 \%$ aq. NaOCl in the
presence of triethylamine to give the corresponding isoxazole 10a in $86 \%$ yield. Similarly, the reaction of oxime 5 a with ethyl propiolate gave the corresponding isoxazole $\mathbf{1 0 b}$ in $37 \%$ yield. From this experiment, we found that the intermediate nitrile oxide 9 was stable at $0{ }^{\circ} \mathrm{C}$ and changed gradually at room temperature into ( $E$ )-2,3-O-isopropylidene-5-O-trityl-D-ribonohydroximo-1,4-lactone 11. The reaction of compound 9 with styrene afforded the corresponding isoxazoline 12 in a regioselective manner.

Sugar-substituted isoxazole $\mathbf{1 4}$ could be also synthesized (Scheme 3), by the reaction of compound 9 with divinyl sulphone followed by treatment with $\mathrm{Na} / \mathrm{Hg}$ in $37 \%$ yield as a foam. On treatment with $5 \% \mathrm{HCl}$, compound 14 was easily deprotected.
3. Reaction of Sugar Hydroximolactones.-3.1. Tandem Michael addition-1,3-dipolar cycloaddition. A mixture of compound 11, methyl acrylate, and dry toluene was heated at $120^{\circ} \mathrm{C}$ in a sealed tube to give ( $3 S, 5 R$ )-8,9-isopropylidenedi-oxy-3-methoxycarbonyl-1-[2'-(methoxycarbonyl)ethyl]-7-(tri-tyloxymethyl)-2,6-dioxa-1-azaspiro[4.4]nonane 16 in $80 \%$ yield as a white powder. This reaction is considered to proceed as follows. A sugar nitrone $\mathbf{1 5}$ is first formed by the attack of the oxime nitrogen atom on methyl acrylate in a Michael addition manner, and then reacts with another molecule of methyl acrylate via 1,3-dipolar cycloaddition (Scheme 4). Such a type of oxime reaction has recently been investigated extensively by Grigg and co-workers. ${ }^{7}$ This work is the first application of Grigg's reaction to the synthesis of sugar isoxazolidines.

Similarly, the reaction of compound 11 with methyl vinyl ketone gave the corresponding spiro sugar isoxazolidine 17 in $48 \%$ yield together with its ( $3 R$ )-isomer ( $37 \%$ ). Furthermore,


Scheme 3 Reagents and conditions: i, $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}$; ii, room temp.; iii, $\mathrm{PhCH}=\mathrm{CH}_{2}$; iv, $\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{2} \mathrm{SO}_{2} ; \mathrm{v}, \mathrm{Na} / \mathrm{Hg}$


11
16
Scheme 4 Reagent: $\mathrm{i}, \mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$

Table 1 Tandem Michael addition-1,3-dipolar cycloaddition of compound $24^{u}$ - equation (1)

| Solvent | Yield $(\%)$ | Product proportions <br> $\left(\mathbf{2 5}: \mathbf{2 6}:\right.$ others $\left.^{b}\right)$ |
| :--- | :--- | :--- |
| Toluene | 65 | $44: 21: 0$ |
| Acetonitrile | 59 | $46: 23: 31$ |
| None | 72 | $31: 31: 38$ |

${ }^{a}$ A mixture of $24(0.2 \mathrm{mmol})$, methyl acrylate ( 4 mmol ) and solvent $\left(0.3 \mathrm{~cm}^{3}\right)$ was heated in sealed tube (volume $5 \mathrm{~cm}^{3}$ ) at $120^{\circ} \mathrm{C}$ for 13.5 h under a $\mathrm{N}_{2}$ atmosphere. ${ }^{b}$ More than two isomers were observed by NMR spectroscopy.


Fig. 1 ORTEP drawing of compound 17 showing $50 \%$ probability ellipsoids for all non-hydrogen atoms
the stereostructure of compound 17 was determined by X-ray diffraction (Fig. 1).

In a preliminary report ${ }^{2 c}$ the stereochemistry at the 3-position in compound 17 was incorrectly determined by NOE data. Compound 11 reacted with acrylonitrile to give the corresponding isoxazolidine 18 in $48 \%$ yield. The diastereoisomers of the product $\mathbf{1 8}$ were not separated.



18
To show the utility of the spiro sugar isoxazolidines thus formed, compound 16 was treated with Raney nickel in refluxing methanol to afford ( $5 R, 8 S$ )-8-hydroxy-3,4-isopropyl-idenedioxy- 6 - $\left[2^{\prime}\right.$-(methoxycarbonyl)ethyl $]$-7-oxo-2-trityloxy-methyl-1-oxa-6-azaspiro[4.4]nonane 19 in $70 \%$ yield. Further-
more, treatment of compound 19 with $\mathrm{LiAlH}_{4}$ in refluxing tetrahydrofuran (THF) gave ( $5 R .8 S$ )-8-hydroxy-6-( $3^{\prime}$-hydroxy-propyl)-3,4-isopropylidenedioxy-2-trityloxymethyl-1-oxa-6azaspiro[4.4]nonane $\mathbf{2 0}$ in $40 \%$ yield. Compound $\mathbf{2 0}$ is a synthetic precursor of hydroxylated pyrrolidines possessing galactosidase inhibition activity. ${ }^{8}$

The reactions of compound 16 with some other reductants were examined. Compound 16 reacted with $\mathrm{NaBH}_{4}$ in EtOH to give the corresponding spiro isoxazolidine 21 in $58_{\%}^{\circ}$ yield. On treatment of compound 16 with $\mathrm{LiAlH}_{4}$, the corresponding spiro isoxazolidine 22 was isolated in $94 \%$ yield. Treatment of compound 16 with $\mathrm{NaBH}_{3} \mathrm{CN}$ in a mixed solution of EtOH and AcOH resulted in the formation of the ring-opened sugar isoxazolidine 23 in $75 \%$ yield as a mixture of diastereoisomers, which could be separated by preparative TLC (PLC') on silica gel, and their stereostructures were determined by NOESY measurements (Scheme 5). This result can be explained by the fact that $\mathrm{O}-6$ is protonated more easily than is $\mathrm{N}-1$.


Scheme 5 Reagents and conditions: i, $\mathrm{RaNi}, \mathrm{MeOH}$, heat; ii, $\mathrm{LiAlH}_{4}$, THF, heat; iii, $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, room temp.; iv, $\mathrm{LiAlH}_{4}, \mathrm{THF}$, room temp.; v, $\mathrm{NaBH} 3_{3} \mathrm{CN}$, EtOH-AcOH, room temp.

The reaction was extended to the glucose lactoxime $24 .{ }^{9}$ Various reaction conditions for the reaction of compound 24 with methyl acrylate were examined. The results are summarized in Table 1. Note that reaction of compound 24 in toluene gave no by-products.
3.2. Tandem alkylation-1,3-dipolar cycloaddition. Compound 11 was allowed to react with methyl trifluoromethanesulphonate (MeOTf) and then the reaction mixture containing the intermediate 27 was treated with DMAD followed by the addition of triethylamine to give the corresponding isoxazoline 28 in a completely stereoselective manner (Scheme 6).

On the other hand, when methyl acrylate was used as a 1,3dipolarophile, three stereoisomers were obtained and the stereostructure of the main product 29 ( $49 \%$ yield) was determined by

Reagent: $\mathrm{i}, \mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$

27
28

29

Scheme 6 Reagents: i, MeOTf; ii, $\mathrm{Et}_{3} \mathrm{~N}$; iii, DMAD; iv, $\mathrm{CH}_{2}=$ $\mathrm{CHCO}_{2} \mathrm{Me}$

NOESY measurements. Therefore methyl trifluoromethanesulphonate was found to be a very useful $N$-alkylating reagent for generation of nitrones from oximes.

## Experimental

Microanalyses were performed with a Perkin-Elmer 240 elemental analyser at the Chemical Analysis Center of Chiba University. IR spectra, for neat specimens unless otherwise stated, were recorded on a Hitachi 215 spectrometer. Mass spectra were obtained on Hitachi RMU 7M and JNM-BX-300 instruments. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, for $\mathrm{CDCl}_{3}$ solutions, were recorded on JEOL MH-100, JNM-FX-270, JNM-GSX400 and JNM-GSX-500 spectrometers. $J$-Values are given in Hz . Carbon signals were assigned by DEPT or INEPT data. 2D ${ }^{1} \mathrm{H}$ NMR (COSY and NOESY) data were measured with JNM-GSX-400 and JNM-GSX-500 spectrometers. Wakogel C-200 was used for low-pressure liquid chromatography (LPLC) and Wakogel B-5F was used for PLC.

2,3;4,6-Di-O-(tetraisopropyldisiloxane-1,3-diyl)-D-glucose Oxime 1.-A mixture of D-glucose ( $900 \mathrm{mg}, 5 \mathrm{mmol}$ ), dry pyridine ( $25 \mathrm{~cm}^{3}$ ), and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane ( $3.2 \mathrm{~cm}^{3}, 10 \mathrm{mmol}$ ) was stirred at $-30^{\circ} \mathrm{C}$ for 30 min under nitrogen and was then kept in a freezer overnight. The reaction mixture was evaporated, water was added, and the mixture was extracted with AcOEt. The extract was washed successively with $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and then with saturated aq. $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$. After being dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the extract was evaporated to give a syrupy material.

A mixture of the material obtained above, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.7 \mathrm{~g}$, 25 mmol ), pyridine ( $15 \mathrm{~cm}^{3}$ ), and EtOH ( $15 \mathrm{~cm}^{3}$ ) was refluxed for 5 h . The reaction mixture was treated by the same way as mentioned above. Purification was performed by LPLC [Wakogel $\mathrm{C}-300 ; \mathrm{CHCl}_{3}-\mathrm{AcOEt}$ (15:1)]: First eluent ( $\alpha-$ anomer of $\mathbf{1 b}$ ); second eluent ( $\mathbf{1 a}$ ); third eluent ( $\beta$-anomer of $\mathbf{1 b}$ ). Total overall yield was $51 \%$. Compound 1 existed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an equilibrium mixture ( $\mathbf{1 b \alpha}: \mathbf{1 a}: \mathbf{1 b} \boldsymbol{\beta} 3: 2: 7$ ) after storage for one week.

1a: Foam; $\delta_{\mathrm{H}} 0.91-1.14\left(56 \mathrm{H}, \mathrm{m}, \mathrm{Pr}^{\mathrm{i}} \times 8\right), 1.62(1 \mathrm{H}, \mathrm{s}$, $\left.5^{\prime}-\mathrm{OH}\right), 3.80-4.20\left(5 \mathrm{H}, \mathrm{m}, 3^{\prime}-4^{\prime}-\right.$ and $5^{\prime}-$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.64(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.27\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \cdot 2} .8 .3,1^{\prime}-\mathrm{H}\right)$ and $7.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NOH})$; $\delta_{\mathrm{C}} 11.7-17.7\left(\operatorname{Pr}^{\mathrm{i}}\right), 62.6$ (C-6'), 68.9, 72.6, 74.2 and 79.4 (C-2', $\mathbf{- 3}^{\prime}$, $-4^{\prime}$ and $-5^{\prime}$ ) and 149.3 (C-1') (Found: C, 52.9; H, 9.5; N, 2.1. $\mathrm{C}_{30} \mathrm{H}_{65} \mathrm{NO}_{8} \mathrm{Si}_{4}$ requires C, $53.0 ; \mathrm{H}, 9.6 ; \mathrm{N}, 2.1 \%$ ); $m / z$ (FAB) $681(\mathrm{M}+1)^{+}$.

1ba: Foam; $\delta_{\mathrm{H}} 4.88\left(1 \mathrm{H}, \mathrm{d}, J_{1: 2^{\prime}} 5.0,1^{\prime}-\mathrm{H}\right)$; the other peaks appeared almost at the same field as those of compound $\mathbf{1 a} ; \delta_{\mathrm{C}}$ 11.7-17.7 ( $\operatorname{Pr}^{\mathrm{i}}$ ), 61.1 (C-6'), 70.1, 71.4, 74.0 and 77.8 (C-2', $-3^{\prime},-4^{\prime}$ and $-5^{\prime}$ ) and 89.7 ( $\mathrm{C}-1^{\prime}$ ).

1bß: Foam; $\delta_{\mathrm{H}} 0.88-1.11$ ( $56 \mathrm{H}, \mathrm{m}, \mathrm{Pr}^{\mathrm{i}} \times 8$ ), $3.21(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}\right), 3.57\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.77\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.85(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 4.00$ and $4.11\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right)$ and $4.17\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \cdot 2^{\prime}} 8.8\right.$, $\left.1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}} 11.7-17.7\left(\mathrm{Pr}^{\mathrm{i}}\right), 60.9\left(\mathrm{C}-6^{\prime}\right), 60.973 .3,78.1$ and 80.6 ( $\mathrm{C}-2^{\prime},-3^{\prime},-4^{\prime}$ and $-5^{\prime}$ ) and 93.2 ( $\mathrm{C}-1^{\prime}$ ).

A Precursor of the Intermediary Nitrone 2.-A mixture of oxime $1(111 \mathrm{mg}, 0.16 \mathrm{mmol})$, DMAD ( $0.023 \mathrm{~cm}^{3}, 0.19 \mathrm{mmol}$ ), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.1 \mathrm{~cm}^{3}\right)$ was stirred for 18 min at room temperature. Purification was carried out in the same way as described in the preparation of compound $\mathbf{3}$ below [PLC: $\mathrm{CHCl}_{3}$ - AcOEt (30:1)]; foam ( $81 \%$ ); $v / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 2900$ and $2850(\mathrm{CH})$ and $1730(\mathrm{CO}) ; \delta_{\mathrm{H}} 0.87-1.14\left(56 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Pr}^{\mathrm{i}}\right)$, 1.72 ( $1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$ ), 3.94 ( $6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), $3.26\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.75-$ $4.20\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-4^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \cdot 2^{\prime}} 8.9,1^{\prime}-\right.$ $\mathrm{H})$ and $5.83(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$.

2-[2',3';4', $6^{\prime}$-Di-O-(tetraisopropyldisiloxane-1,3-diyl)-D-glucosyl]-3,4,5-tris(methoxycarbonyl)-3-methoxycarbonyl-methyl-2,3-dihydroisoxazole 3.-A mixture of compound 1 (183 $\mathrm{mg}, 0.27 \mathrm{mmol}$ ), DMAD ( $0.42 \mathrm{~cm}^{3}, 3.4 \mathrm{mmol}$ ), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0.35 \mathrm{~cm}^{3}\right)$ was stirred for 10 h at room temperature. The reaction mixture was evaporated to give a pasty material, which was treated by LPLC [Wakogel C-300; $\left.\mathrm{CHCl}_{3}-\mathrm{AcOEt}(40: 1)\right]$. First eluent contained excess of DMAD and second eluent was further purified by PLC on silica gel [ $\mathrm{CHCl}_{3}-\mathrm{AcOEt}$ (40:1)] to give compound $\mathbf{3}$ as a foam in $87 \%$ yield ( $x / \beta 3 / 7$ ). The $x$-anomer of compound 3 was then separated into two isomers by PLC $\left[\mathrm{CHCl}_{3}-\mathrm{AcOEt}(40: 1)\right]$, while the $\beta$-anomer was treated in the same way to give two isomers $\left[\mathrm{CHCl}_{3}-\mathrm{AcOEt}(30: 1)\right]$. Main x-anomer: $20 \%$; foam (Found: C, $52.4 ; \mathrm{H}, 8.1 ; \mathrm{N}, 1.7$. $\mathrm{C}_{42} \mathrm{H}_{77} \mathrm{NO}_{16} \mathrm{Si}_{4}$ requires C, $52.2 ; \mathrm{H}, 8.0 ; \mathrm{N}, 1.5 \%$ ); $m / z$ (FAB) $965(\mathrm{M}+1)^{+} ; v / \mathrm{cm}^{-1} 2850$ and $2900(\mathrm{CH})$ and 1720 and 1740 $(\mathrm{CO}) ; \delta_{\mathrm{H}} 0.89-1.10\left(56 \mathrm{H}, \mathrm{m}, \mathrm{Pr}^{\mathrm{i}} \times 8\right), 3.25$ and $3.29(2 \mathrm{H}, \mathrm{d}$, $J_{\text {gem }} 16, \mathrm{CH}_{2}$ ), 3.65 ( $1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$ ), 3.65, 3.76, 3.79 and 3.84 ( 3 $\mathrm{H} \times 4, \mathrm{~s}, \mathrm{Me} \times 4), 3.75-3.84\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}$, dd, $J_{\mathrm{gem}} 13, J_{5^{\prime} \cdot 6^{\prime}} 2,6^{\prime}-\mathrm{H}$ ), $3.98\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \cdot 2^{\prime}} 6.6, J_{2^{\prime} \cdot 3} \cdot 9.1,2^{\prime}-\mathrm{H}\right.$ ), $4.24\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime} \cdot 4^{\prime}}=J_{4^{\prime} \cdot 5^{\prime}}=8.8,4^{\prime}-\mathrm{H}\right)$ and $5.01\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 6.6\right.$, $\left.1^{\prime}-\mathrm{H}\right)$; $\operatorname{NOE~C}\left(1^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{C}\left(4^{\prime}\right)-\mathrm{H}$.
Minor $x$-anomer: $6 \%$; foam; $m / z$ (FAB) $965(\mathrm{M}+1)^{+} ; \delta_{\mathrm{H}}$ $0.88-1.08\left(56 \mathrm{H}, \mathrm{m}, \operatorname{Pr}^{\mathrm{i}} \times 8\right), 3.24$ and $3.31\left(2 \mathrm{H}, \mathrm{d}, J_{\text {gem }} 15.9\right.$, $\left.\mathrm{CH}_{2}\right), 3.66,3.743 .75$ and $3.85(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{Me} \times 4)$, $3.79-3.87$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-5^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \cdot 2^{\prime}} 5.8, J_{2^{\prime} \cdot 3^{\prime}} 9.6,2^{\prime}-\mathrm{H}\right)$, $4.03\left(1 \mathrm{H}, \mathrm{m}, J_{\mathrm{gem}} 11.5,6^{\prime}-\mathrm{H}\right), 4.21\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$ and $4.99(1 \mathrm{H}$, d, $\left.J_{1^{\prime}: 2} \cdot 5.8,1^{\prime}-\mathrm{H}\right)$; NOE C $\left(1^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{C}\left(4^{\prime}\right)-\mathrm{H}$.

Main $\beta$-anomer: $53 \%$; foam; $m /=$ (FAB) $965(\mathrm{M}+1)^{+}$; $v / \mathrm{cm}^{-1} 2850$ and $2930(\mathrm{CH})$ and $1730(\mathrm{CO}) ; \delta_{\mathrm{H}} 0.91-1.10(56 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Pr}^{\mathrm{i}} \times 8\right), 2.96\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.02$ and $3.20\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 16.1\right.$,
$\left.\mathrm{CH}_{2}\right), 3.60,3.74,3.78$ and $3.89(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{Me} \times 4), 3.70-3.80$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 4^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{H}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} .2^{\prime}}=J_{2^{\prime}, 3^{\prime}}=8.8\right.$, $\left.2^{\prime}-\mathrm{H}\right), 3.99\left(1 \mathrm{H}, \mathrm{m}, J_{\text {gem }} 12.4,6^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.8,1^{\prime}-\mathrm{H}\right)$; NOE $\mathrm{C}\left(1^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{C}\left(5^{\prime}\right)-\mathrm{H}$.

Minor $\beta$-anomer: $8 \%$; foam; $m / z$ (FAB) $965(\mathrm{M}+1)^{+} ; \delta_{\mathrm{H}}$ $0.90-1.12\left(56 \mathrm{H}, \mathrm{m}, \mathrm{Pr}^{\mathrm{i}} \times 8\right), 3.07\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.35(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 3.68,3.73,3.74$ and $3.87(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{Me} \times 4), 3.70(1 \mathrm{H}$, dd, $\left.J_{2^{\prime} .3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=8.2,3^{\prime}-\mathrm{H}\right), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 8.9, J_{2^{\prime}, 3^{\prime}} 8.2\right.$, $\left.4^{\prime}-\mathrm{H}\right), 3.79\left(1 \mathrm{H}\right.$, dd, $\left.J_{1^{\prime}, 2^{\prime}} 8.5, J_{2^{\prime}, 3^{\prime}} 8.2,2^{\prime}-\mathrm{H}\right)$ and 3.02 and 3.20 $\left(1 \mathrm{H} \times 2\right.$, dd, $\left.J_{\mathrm{gem}} 12.4^{\prime}, J_{5^{\prime}, 6^{\prime}} 1.6,6^{\prime}-\mathrm{H}_{2}\right)$; NOE C(1')-H $\longleftrightarrow$ $\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}$.

Deprotection of Compound 3.-A mixture of compound 3 ( $241 \mathrm{mg}, 0.25 \mathrm{mmol}$ ), toluene $\left(10 \mathrm{~cm}^{3}\right.$ ), and tetrabutylammonium fluoride ( $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{THF}$ solution, $1 \mathrm{~cm}^{3}$ ) was stirred at room temperature for 30 min . The resulting mixture was added to water and then extracted with AcOEt. The extract was purified by HPLC [Nucleosil $5 \mathrm{NH}_{2}$; eluent: MeCN -water (6:4)] to give deprotected compound $\mathbf{3}$ in $80 \%$ yield (Found: C, 45.2; $\mathrm{H}, 5.3 ; \mathrm{N}, 3.0 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{14}$ requires $\mathrm{C}, 45.1 ; \mathrm{H}, 5.3 ; \mathrm{N}$, $2.9 \%$ ) ; m/z (FAB) $480(\mathrm{M}+1)^{+}$.

3,4,5-Tris(methoxycarbonyl)-3-methoxycarbonylmethyl-2,3dihydroisoxazole 4.-A mixture of the main $\beta$-anomer of compound $3(270 \mathrm{mg}, 0.29 \mathrm{mmol})$, diethyl ether ( $2 \mathrm{~cm}^{3}$ ) and $5 \%$ $\mathrm{HCl}-\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ was stirred for 7 h at $40^{\circ} \mathrm{C}$. The reaction mixture was evaporated, the residue was added to water ( 20 $\mathrm{cm}^{3}$ ), and the mixture was adjusted to pH 9 with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was performed by the usual PLC work-up $\left[\mathrm{CHCl}_{3}-\mathrm{AcOEt}\right.$ (30:1)] to afford compound 4 as the $(+)$-form in $61 \%$ yield. In a similar way, the $(-)$-form of compound 4 was derived in $51 \%$ yield from the main $x$-anomer of compound 3 .
(-)-Form of 4: Oil ( $51 \%$ ) (Found: C, 45.6; H, 5.0; N, 4.5. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{9}$ requires $\mathrm{C}, 45.4 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.4 \%$ ) $m / z(\mathrm{FAB}) 318$ $(\mathrm{M}+1)^{+} ;[\alpha]_{\mathrm{D}}-147^{\circ}\left(c \quad 0.48, \mathrm{CHCl}_{3}\right) ; v / \mathrm{cm}^{-1} 3230(\mathrm{NH})$, 2950 and $2980(\mathrm{CH})$ and 1740 and $1720(\mathrm{CO}) ; \delta_{\mathrm{H}} 2.88$ and 3.56 $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 17.1, \mathrm{CH}_{2}\right), 3.69,3.73,3.83$ and $3.88(3 \mathrm{H} \times 4$, s, $\mathrm{Me} \times 4)$ and $8.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \dot{\delta}_{\mathrm{C}} 40.09\left(\mathrm{CH}_{2}\right), 52.11,52.18$, 53.42 and $53.81(\mathrm{Me} \times 4), 72.58(\mathrm{C}-3), 108.03(\mathrm{C}-4), 155.27$ (C-5) and $158.51,161.78,170.53$ and $170.59(\mathrm{CO} \times 4)$.
(+)-Form of 4: Oil $(51 \%) ; m / z($ FAB $) 318(M+1)^{+} ;[\alpha]_{\mathrm{D}}$ $+147^{\circ}\left(c 0.46, \mathrm{CHCl}_{3}\right)$.

2,3,-O-Isopropylidene-5-O-trityl-D-ribose Oxime 5. ${ }^{10}$-The preparative method was modified as follows: A mixture of Dribose ( $3 \mathrm{~g}, 20 \mathrm{mmol}$ ), dimethylformamide (DMF) $\left(37.5 \mathrm{~cm}^{3}\right.$ ), 2,2-dimethoxypropane ( $7.5 \mathrm{~cm}^{3}$ ), and $\mathrm{TsOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{mg})$ was stirred at room temperature overnight. The reaction mixture was evaporated under $60^{\circ} \mathrm{C}$ to remove DMF. The obtained oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. A mixture of the resulting $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, trityl chloride $(8.4 \mathrm{~g}, 30$ mmol ) and small amount of 4 -(dimethylamino)pyridine was refluxed overnight. The reaction mixture was poured into water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then rotary evaporated to give a brown syrupy material, which was purified by LPLC on silica gel [diethyl ether-hexane ( $1: 1$ )] ( $60 \%$ ).

Next, ethanol ( $10 \mathrm{~cm}^{3}$ ) containing $\mathrm{NaOEt}(5 \mathrm{mmol})$ was treated with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.35 \mathrm{~g}, 5 \mathrm{mmol})$ under nitrogen. The mixture was stirred, cooled, and filtered through a glass filter at 0 C. The filtrate was added with the above ethanolic $\mathrm{NH}_{2} \mathrm{OH}$ solution and a small amount of molecular sieves $4 \AA$. The resultant mixture was stirred under nitrogen overnight and then purified by LPLC [AcOEt-hexane (2:3)] to give compound 5 in $98^{\circ}$, yield as a foam.

Intermediary Nitrone 6.-The above reaction was stopped after 30 min . Usual work-up was performed: foam; $v / \mathrm{cm}^{-1} 3040$ $(\mathrm{Ar}, \mathrm{CH}), 2900(\mathrm{CH})$, and 1740 and $1710(\mathrm{CO}) ; \delta_{\mathrm{H}} 3.06$ and 3.57 $\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 10, J_{4,5}=J_{4,5^{\prime}}=3, \mathrm{CH}_{2}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.78$ ( $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ ), $3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 5.4\right.$, $\left.J_{3.4} 2.7,3-\mathrm{H}\right), 4.88(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.27\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2}=J_{2.3}=\right.$ $5.4,2-\mathrm{H}), 7.00\left(1 \mathrm{H}, \mathrm{d}, J_{1.2} 5.4,1-\mathrm{H}\right)$.

2-(2,3,-O-Isopropylidene-5-O-trityl-D-ribosyl)-3,4,5-tris-(methoxycarbonyl)-3-methoxycarbonylmethyl-2,3-dihydroisoxazole 7.-A mixture of compound $5(224 \mathrm{mg}, 0.5 \mathrm{mmol})$, DMAD $\left(0.99 \mathrm{~cm}^{3}, 8 \mathrm{mmol}\right)$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.4 \mathrm{~cm}^{3}\right)$ was stirred for 72 h to give a pasty material in $98 \%$ yield. Usual purification with PLC on silica gel $\left[\mathrm{AcOH}-\mathrm{CHCl}_{3}(1: 30)\right]$ was performed; the products were the main $\alpha$ riboside of compound $7(52 \%)$, the minor $\alpha$ riboside $(5.5 \%$ ), the main $\beta$ riboside ( $27 \%$ ), and the minor $\beta$ riboside ( $13.5 \%$ ).

Main $\alpha$ riboside of compound 7: Foam (Found: C, 64.2; H, 5.7; $\mathrm{N}, 2.0 . \mathrm{C}_{39} \mathrm{H}_{41} \mathrm{NO}_{13}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 5.7 ; \mathrm{N}, 1.9 \%$; $\mathrm{m} / \mathrm{z}$ (FAB) $732(\mathrm{M}+1)^{+} ; v / \mathrm{cm}^{-1} 3060(\mathrm{Ar}, \mathrm{CH}), 2930$ and 2850 $(\mathrm{CH})$ and $1720-1740(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.30,1.53(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{Me} \times 2)$, $3.03\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 10.3, J_{4^{\prime}, 5^{\prime}} .9,5^{\prime}-\mathrm{H}\right), 3.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.40\left(1 \mathrm{H}\right.$, dd, $\left.J_{\mathrm{gem}} 10.3, J_{4^{\prime} .5} \cdot 3.1,5^{\prime}-\mathrm{H}\right), 3.56,3.68,3.76$ and 3.87 $\left(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me} \times 4\right), 4.24\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.56(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 4.88\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.56\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 5.1,1^{\prime}-\mathrm{H}\right)$ and $7.21-$ 7.48 ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3$ ); NOE $\mathrm{C}\left(1^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{C}\left(3^{\prime}\right)-\mathrm{H}, \mathrm{C}\left(1^{\prime}\right)-$ $\mathrm{H} \longleftrightarrow \mathrm{C}\left(5^{\prime}\right)-\mathrm{H} ; \delta_{\mathrm{C}} 24.9$ and $25.5\left(\mathrm{CMe}{ }_{2}\right), 38.6(\mathrm{C}-6), 51.8,51.9$, 52.9 and $53.5\left(\mathrm{CO}_{2} \mathrm{Me}\right), 65.1\left(\mathrm{C}-5^{\prime}\right), 75.9(\mathrm{C}-3), 80.6,81.7$ and 81.8 (C-2', $-3^{\prime}$ and $\left.-4^{\prime}\right), 87.5\left(\mathrm{Ph}_{3} \mathrm{C}\right), 90.5\left(\mathrm{C}-1^{\prime}\right), 109.4$ (C-4), $114.0\left(\mathrm{Me}_{2} \mathrm{C}\right), 143.4$ (ipso- C of Ph ), $152.2(\mathrm{C}-5)$ and 158.2, 162.2, 169.3 and 169.4 (CO).

Main $\beta$ riboside of compound 7: Foam (Found: C, 63.8; H, $5.5 ; \mathrm{N}, 2.2 \%$ ); $m / z(\mathrm{FAB}) 732(\mathrm{M}+1)^{+} ; v / \mathrm{cm}^{-1} 3060(\mathrm{Ar}, \mathrm{CH})$, 2930 and $2850(\mathrm{CH})$ and $1710,1720,1730$ and $1740(\mathrm{CO}) ; \delta_{\mathrm{H}}$ 1.31 and $1.49\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CM} e_{2}\right), 3.01$ and $3.12\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}}\right.$ $16.1, \mathrm{CH}_{2}$ ), $3.22\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 9.6, J_{4^{\prime}, 5} .7 .29,5^{\prime}-\mathrm{H}\right), 3.27(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {gem }} 9.6, J_{4^{\prime} .5}, 5.5,5^{\prime}-\mathrm{H}\right), 3.51,3.71,3.72$ and $3.73(3 \mathrm{H} \times 4$, s, $\left.\mathrm{CO}_{2} \mathrm{Me} \times 4\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.51\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.78(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 1.4,1^{\prime}-\mathrm{H}\right), 7.21-7.48(15 \mathrm{H}$, br s, $\mathrm{Ph} \times 3$ ); $\mathrm{NOEC}\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{CMe}_{2}$.

Minor $\beta$ riboside of 7: Foam; $v / \mathrm{cm}^{-1} 3060$ (Ar, CH), 2930 and $2850(\mathrm{CH})$ and $1710-1740(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.30,1.52(3 \mathrm{H} \times 2$, s, $\left.\mathrm{CMe}_{2}\right), 3.17$ and $3.20\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 15.7, \mathrm{CH}_{2}\right), 3.10(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {gem }} 10.2, J_{4^{\prime}, 5}, 4.3,5^{\prime}-\mathrm{H}\right), 3.30\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 10.2, J_{4^{\prime} .5}, 4.9\right.$, $\left.5^{\prime}-\mathrm{H}\right), 3.43,3.58,3.67$ and $3.76\left(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me} \times 4\right), 4.14$ $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.82\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.18(1$ $\left.\mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3.0,1^{\prime}-\mathrm{H}\right), 7.21-7.50(15 \mathrm{H}$, br s, $\mathrm{Ph} \times 3)$; NOE $\mathrm{C}\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{CMe}_{2}$.

## 2-(2,3-O-Isopropylidene- $\beta$-D-ribosyl)-3,4,5-tris(methoxy-

 carbonyl)-3-methoxycarbonylmethyl-2,3-dihydroisoxazole 8.-A mixture of the $\alpha$ riboside of compound 7 ( $293 \mathrm{mg}, 0.4 \mathrm{mmol}$ ), a small amount of $\mathrm{FeCl}_{3}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was worked up by the usual PLC on silica gel to give compound $\mathbf{8}$ in $63 \%$ yield: oil (Found: C, 49.0; $\mathrm{H}, 5.6 ; \mathrm{N}, 3.0 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{13}$ requires $\mathrm{C}, 49.1 ; \mathrm{H}, 5.6 ; \mathrm{N}, 2.9 \%$; $m / z(\mathrm{FAB}) 490(\mathrm{M}+1)^{+} ;[\alpha]_{\mathrm{D}}-31^{\circ}\left(c 0.54, \mathrm{CHCl}_{3}\right) ; v / \mathrm{cm}^{-1}$ $3600-3200(\mathrm{OH}), 3050(\mathrm{Ar}, \mathrm{CH}), 2970$ and $2940(\mathrm{CH})$ and 1720, 1730 and $1735(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.33$ and $1.50\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 3.16$ and $3.23\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 15.8, \mathrm{CH}_{2}\right), 3.40\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.64(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.67,3.73,3.81$ and $3.90\left(3 \mathrm{H} \times 4, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me} \times 4\right)$, $4.34\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.76\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.91\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$ and 5.05 (1 H, d, $\left.J_{1^{\prime}, 2^{\prime}} 1.6,1^{\prime}-\mathrm{H}\right) ; \mathrm{NOE} \mathrm{C}\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)-\mathrm{H} \longleftrightarrow \mathrm{CMe}_{2}$.Compound 8 was also obtained, in $79 \%$ yield, starting from the $\beta$ riboside of compound 7 . The conversion of the carbohydrate 8 into compound 4 was carried out by the same method as previously described for the preparation of compound. ${ }^{4}$
(1'S, 2'R, $3^{\prime} \mathrm{R}$ )-3-(3'-Hydroxy- $1^{\prime}, 2^{\prime}$-isopropylidenedioxy-4'-tri-tyloxybutyl)-4,5-bis(methoxycarbonyl)isoxazole 10a.-To a stirred mixture of compound $5 \mathrm{a}(223 \mathrm{mg}, 0.5 \mathrm{mmol})$, DMAD ( $0.5 \mathrm{~cm}^{3}, 4 \mathrm{mmol}$ ), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added a solution of $5 \%$ aq. NaOCl and triethylamine $\left(0.02 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 6 h . The colour of the solution changed to blue. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was dried over $\mathrm{MgSO}_{4}$ and then evaporated. The residue was purified by PLC on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give compound $\mathbf{1 0 a}$ as a foam in $86 \%$ yield (Found: C, 67.6; H, 5.9; N, 2.3. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{9}$ requires C, 67.5; H , 5.7; N, 2.4\%); $m / z(\mathrm{EI}) 586(\mathrm{M}-1)^{+} ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3515(\mathrm{OH})$, $3040(\mathrm{Ar}, \mathrm{CH}), 2970$ and $2940(\mathrm{CH})$ and $1740(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.42(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.21(1 \mathrm{H}, \mathrm{d}, \mathrm{OH}), 3.25-3.35(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ ) , $3.49\left(1 \mathrm{H}, \mathrm{m}, 3^{-}-\mathrm{H}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.99(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime}} 6.1, J_{2^{\prime} \cdot 3^{\prime}} 9.5,2^{\prime}-\mathrm{H}\right), 5.77(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2}, 6.1\right)$ and $7.21-7.48(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}} 25.3(\mathrm{Me}), 26.9(\mathrm{Me})$, $52.7\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $53.4\left(\mathrm{CO}_{2} \mathrm{Me}\right), 64.6\left(\mathrm{CH}_{2}\right), 69.2,72.6$ and 79.9 (C-1', $-2^{\prime}$ and $\left.-3^{\prime}\right), 86.9\left(\mathrm{Ph}_{3} \mathrm{CO}\right), 110.4(\mathrm{C}-4), 115.0\left(\mathrm{CMe}_{2}\right)$, 127.0-128.7 (Ar), 143.7 (Ar-ipso), 156.9 (C-5) and 160.1, 160.8 and $161.0(\mathrm{C}-3, \mathrm{CO} \times 2)$.
( $\left.1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{R}\right)$-3-(3'-Hydroxy- $1^{\prime}, 2^{\prime}$-isopropylidenedioxy-4'-tri-tyloxybutyl)-4-methoxycarbonylisoxazole 10b.-The reaction was carried out by the same method as mentioned above but using ethyl propiolate in place of DMAD: Foam, $70 \%$ (Found: C, 70.8; H, 6.1; N, 2.4. $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{7}$ requires C, 70.7; H, 6.1; N, $2.6 \%$ ); $m / z(\mathrm{EI}) 542(\mathrm{M}-1)^{+} ; \delta_{\mathrm{H}} 1.41$ and $1.50(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.41 ( $3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH}_{2} \mathrm{Me}$ ), 2.51 ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ ), $3.32-3.37$ ( 3 H , $\left.\mathrm{m}, J_{1^{\prime}, 2^{\prime}} 6.4, J_{2^{\prime}, 3} \cdot 8.8, \mathrm{CH}_{2}\right), 5.44\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 6.4,1^{\prime}-\mathrm{H}\right)$ and $7.21-$ $7.43(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}} 14.1\left(\mathrm{CH}_{2} \mathrm{Me}\right), 25.1$ and $27.0(\mathrm{Me}), 62.3$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 64.9\left(\mathrm{CH}_{2} \mathrm{OTr}\right), 69.0\left(\mathrm{C}-3^{\prime}\right), 72.6\left(\mathrm{C}-2^{\prime}\right), 77.8\left(\mathrm{C}-1^{\prime}\right)$, $86.9\left(\mathrm{CMe}_{2}\right), 109.2(\mathrm{C}-4), 110.3\left(\mathrm{CPh}_{3}\right), 127.1,127.8$ and 128.6 (Ph), 143.7 (Ph-ipso), 156.7 (CO), 160.2 (C-5) and 163.2 (C-3).

2,3-O-Isopropylidene-5-O-trityl-D-ribonohydroximo-1,4-lactone 11.-Aq. $\mathrm{NaOCl}\left(2.4 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of compound $\mathbf{5 a}(447 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min at the same temperature and then for 30 min at room temperature. The resultant mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was dried over $\mathrm{MgSO}_{4}$. Purification by TLC on silica gel [ $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}$ (20:1)] gave compound 11 as a foam in $99 \%$ yield (lit., ${ }^{8} 88.3 \%$ ); v/cm ${ }^{-1}(\mathrm{KBr}) 3350(\mathrm{OH}), 3020(\mathrm{Ar}, \mathrm{CH})$, 2990-2850 ( CH ) and $1690(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}} 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.46 ( 3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.96\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 3, J_{\mathrm{gem}} 9.2,5-\mathrm{H}\right), 3.60(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{4.5} \cdot 3.2, J_{\text {gem }} 9.2,5^{\prime}-\mathrm{H}\right), 4.53(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{d}$, $\left.J_{2.3} 6,2-\mathrm{H}\right), 7.19-7.38(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3)$ and $7.54(1 \mathrm{H}, \mathrm{s}$, OH ).
( $1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{R}$ )-3-( $3^{\prime}-$ Hydroxy- $\mathbf{1}^{\prime}, 2^{\prime}$-isopropylidenedioxy-3'-trityloxybutyl)-5-phenyl-2,5-dihydroisoxazole 12.-The reaction was performed using styrene in place of DMAD in the same way as described in the preparation of compound 10a. For compound 12 (Found: C, 76.5; H, 6.6; N, 2.6. $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{5}$ requires C, 76.5; H, 6.4; N, 2.6\%); m/z (EI) $549\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}$ ( KBr ) $3350(\mathrm{NH}), 3050(\mathrm{Ar}, \mathrm{CH})$ and 2920 and $2970(\mathrm{CH})$; $\delta_{\mathrm{H}}$ $1.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.30(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.80(1$ $\left.\mathrm{H} \times 2, \mathrm{br}, J_{\mathrm{gem}} 11,4^{\prime}-\mathrm{Hz}\right), 3.60\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.00(1 \mathrm{H}, \mathrm{d}, J$ $8,5-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CH}), 4.44\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.08(1 \mathrm{H}$, d, $\left.J_{1^{\prime}, 2^{\prime}}, 6,1^{\prime}-\mathrm{H}\right), 6.80-7.24(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 4)$ and $8.10(1 \mathrm{H}$, br s, NH).
( $1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{R}, 3^{\prime} \mathrm{R}$ )-3-(3'-Hydroxy-1 $\mathbf{1}^{\prime}, 2^{\prime}$-isopropylidene- $3^{\prime}$-trityloxybutyl) isoxazole 14.-To a mixture of compound 5 a ( 223 mg , 0.5 mmol ), divinyl sulphone ( $470 \mathrm{mg}, 4.0 \mathrm{mmol}$ ), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(2.0 \mathrm{~cm}^{3}\right)$ was added $5 \%$ aq. $\mathrm{NaOCl}\left(2.0 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and was then added with
water. Extraction of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was performed and the extract was evaporated to give compound $\mathbf{1 3}$ as an oil.

A mixture of intermediate 13, dry $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}(284 \mathrm{mg}, 2 \mathrm{mmol})$, and $5 \% \mathrm{Na} / \mathrm{Hg}(2 \mathrm{~g})$ was stirred at room temperature for 1 h . The reaction mixture was filtered through Celite and washed with diethyl ether. The filtrate was purified by PLC [AcOEt-hexane (1:1)] to give compound 14 as a foam in $37 \%$ yield (Found: C, 69.2; H, 5.9; N, 2.8. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{7}$ requires C, 69.2; H, 5.8; N, 2.8\%); m/z (EI) $503\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}$ $(\mathrm{KBr}) 3350(\mathrm{OH}), 3040(\mathrm{Ar}, \mathrm{CH})$ and $2900(\mathrm{CH}) ; \delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.75(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{OH}), 3.29\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}\right.$ 9.7, $\left.J_{3^{\prime} .4} \cdot 3.11,4^{\prime}-\mathrm{H}\right), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 9.7, J_{3^{\prime}, 4} \cdot 5.3,4^{\prime}-\mathrm{H}\right), 3.44-$ $3.50\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.51\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \cdot 2^{\prime}} 6.4, J_{2^{\prime} \cdot 3^{\prime}} 9.3,2^{\prime}-\mathrm{H}\right), 5.46$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2}, 6.4,1^{\prime}-\mathrm{H}\right), 6.36\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 1.7,5-\mathrm{H}\right), 7.20-7.44$ (15 $\mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3$ ) and $8.40\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 1.7, J_{1^{\prime} .4} 0.4,4-\mathrm{H}\right) ; \delta_{\mathrm{C}} 25.1$ (Me), 27.1 (Me), 64.8 ( $\mathrm{C}^{\prime} 4^{\prime}$ ), 69.2 (C-3'), 72.8 (C-2'), 77.9 ( $\mathrm{C}-1^{\prime}$ ), $86.7\left(\mathrm{CMe}_{2}\right), 104.3(\mathrm{C}-4), 110.1\left(\mathrm{CPh}_{3}\right), 127.0,127.8$ and 128.6 (Ph), 143.8 (Ar-ipso), 158.2 (C-5) and 161.8 (C-3).

Deprotection of Compound 14.--A mixture of compound 14 ( $503 \mathrm{mg}, 1 \mathrm{mmol}$ ), $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$, and aq. $5 \% \mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ was stirred for 3 h at $0^{\circ} \mathrm{C}$. Ion-exchange chromatography [Amberlite-IRA-410 $\left(30 \mathrm{~cm}^{3}\right)$ ] with MeOH was performed. The resulting filtrate was condensed to give an oil, which was then washed with hexane to remove triphenylmethanol. The deprotected compound 14 was obtained in $95 \%$ yield. Purity was determined by HPLC [Nucleosil $5 \mathrm{NH}_{2}$, eluent: MeCN -water (3:2)] (Found: C, 44.6; H, 5.9; N, 7.7. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{5}$ requires C , 44.4; H, 5.9; N, 7.4\%); m/z (FAB) $190(\mathrm{M}+1)^{+}$
(3S,5S,7R,8R,9R)-8,9-Isopropylidenedioxy-3-methoxy-carbonyl-1-[2'-(methoxycarbonyl)ethyl $]-7$-trityloxymethyl-2,6-dioxa-1-azaspiro[4.4]nonane 16.-A mixture of compound 11 ( $111 \mathrm{mg}, 0.25 \mathrm{mmol}$ ), methyl acrylate ( $0.5 \mathrm{~cm}^{3}, 5.5 \mathrm{mmol}$ ), and dry toluene $\left(1.5 \mathrm{~cm}^{3}\right)$ was heated at $120^{\circ} \mathrm{C}$ in a sealed tube (volume $5 \mathrm{~cm}^{3}$ ) for 10 h . The solution was evaporated and the residue was dried in vacuo for 15 min to yield crude products, which were purified by PLC on silica gel [AcOEt-hexane (2:3)] to give an isomeric mixture in $97 \%$ yield. Additional purification with THF-cyclohexane ( $2: 3$ ) as developer gave compound 16 as a foam in $85 \%$ yield; m.p. $56-57^{\circ} \mathrm{C}$ (Found: C, $68.0 ; \mathrm{H}, 6.3 ; \mathrm{N}$, 2.3. $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}_{9}$ requires C, $68.1 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.3 \%$ ); $m / z(\mathrm{EI}) 617$ $\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3040(\mathrm{Ar}, \mathrm{CH}), 2960$ and $2930(\mathrm{CH})$ and $1725(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.32(1 \mathrm{H}$, ddd, $\left.J_{\text {gem }} 15.8, J_{1^{\prime} 2^{\prime}}=J_{1^{\prime} 2^{\prime \prime}}=7.9,1^{\prime}-\mathrm{H}\right), 2.53\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 12.4\right.$, $\left.J_{3.4} 8.9,4-\mathrm{H}\right), 2.62\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{gem}} 15.8, J_{1^{\prime} \cdot 2^{\prime}} 5.3, J_{1^{\prime} \cdot 2^{\prime \prime}} 8.4,1^{\prime}-\mathrm{H}\right)$, $2.94\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{gem}} 13.2, J_{1^{\prime} .2^{\prime}} 7.9, J_{1^{\prime} \cdot 2^{\prime}} 5.3,2^{\prime}-\mathrm{H}\right), 2.99(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {gem }} 12.4, J_{3.4^{\prime}} 7.4,4^{\prime}-\mathrm{H}\right), 3.06\left(1 \mathrm{H}\right.$, ddd, $J_{\text {gem }} 13.2, J_{1^{\prime}, 2^{\prime}} 7.9, J_{1^{\prime \prime}, 2^{\prime}}$ 8.4, 2'-H), $3.15\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}\right), 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.72(3 \mathrm{H}, \mathrm{s}$, COMe), $4.72\left(1 \mathrm{H}, \mathrm{ddd}, J_{7.10}=J_{7.10^{\prime}}=6.4, J_{7.8} 2.4,7-\mathrm{H}\right), 4.49$ $\left(1 \mathrm{H}, \mathrm{d}, J_{8.9} 6.8,9-\mathrm{H}\right), 4.53\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 8.9, J_{3.4} 7.4,3-\mathrm{H}\right), 4.57$ ( $1 \mathrm{H}, \mathrm{dd}, J_{8,7} 2.4, J_{8.9} 6.8,8-\mathrm{H}$ ) and $7.22-7.43(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3$ ); $\delta_{\mathrm{c}} 25.2(\mathrm{Me}), 26.5(\mathrm{Me}), 32.4$ and $35.9(\mathrm{C}-4,-21), 45.9\left(\mathrm{C}-1^{\prime}\right), 51.4$ and $52.4(\mathrm{COMe} \times 2), 63.7(\mathrm{C}-10), 75.3,81.4,83.7$ and 84.1 (C-$3,-7,-8$ and -9$), 86.9\left(\mathrm{Ph}_{3} \mathrm{CO}\right), 104.5(\mathrm{C}-5), 113.7\left(\mathrm{Me}_{2} \mathrm{C}\right), 127.1$, 127.9 and $128.6(\mathrm{Ph}), 143.7(\mathrm{Ph}-$ ipso) and 172.2 and 172.6 (CO).
(3S,5R,7R,8R,9R)-3-Acetyl-8,9-isopropylidenedioxy-1-(3'-oxobutyl)-7-trityloxymethyl-2,6-dioxa-1-azaspiro[4.4]nonathe 17.-A mixture of methyl vinyl ketone ( $0.5 \mathrm{~cm}^{3}, 6 \mathrm{mmol}$ ), compound $11(225 \mathrm{mg}, 0.5 \mathrm{mmol})$, and toluene ( $1.5 \mathrm{~cm}^{3}$ ) was heated at $120^{\circ} \mathrm{C}$ for 10 h in a sealed tube under nitrogen. The reaction mixture was evaporated to give an oil. Purification by TLC on silica gel [AcOEt-hexane (1:1)] gave compound 17 as a powder in $48 \%$ yield, together with the $3 R$-isomer of compound 17 ( $37 \%$ ); m.p. $177-178{ }^{\circ} \mathrm{C}$ (Found: C, $71.8 ; \mathrm{H}, 6.7$; N, 2.4. $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}_{7}$ requires $\mathrm{C} .71 .6 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.3 \%$ ); $m / z$ (EI) 585
$\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3010(\mathrm{Ar}, \mathrm{CH}), 2950$ and $2900(\mathrm{CH})$ and $1710(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.51(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{s}$, COMe), $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.44\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 13.4, J_{3.4} 4.7,4-\right.$ H), $2.68\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{gem}} 0, J_{1^{\prime}, 2^{\prime}}=J_{1^{\prime \prime}, 2^{\prime}}=6.2,2^{\prime}-\mathrm{H}\right), 2.94(1 \mathrm{H}$, dd, $J_{\text {gem }} 13.4, J_{3.4^{\prime}} 10.0,4^{\prime}-\mathrm{H}$ ), 3.01 ( 1 H , ddd, $J_{\text {gem }} 12.4, J_{1^{\prime}, 2^{\prime}}=$ $\left.J_{1^{\prime}, 2^{\prime \prime}}=6.2,1^{\prime}-\mathrm{H}\right), 3.04\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{gem}} 12.4, J_{1^{\prime}, 2}=J_{1^{\prime \prime}, 2^{\prime \prime}}=$ $\left.6.2,1^{\prime}-\mathrm{H}\right), 3.21\left(2 \mathrm{H}, \mathrm{d}, J_{7,10} 5.3, \mathrm{CH}_{2} \mathrm{OTr}\right), 4.06\left(1 \mathrm{H}\right.$, ddd, $J_{7,8}$ $3.4,7-\mathrm{H}), 4.39\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 4.7, J_{3.4} \cdot 10.0,3-\mathrm{H}\right), 4.56-4.61(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H})$ and $7.22-7.44(15 \mathrm{H}, \mathrm{m}, \mathrm{Tr})$.
(5R,7R,8R,9R)-3-Cyano-1-(2'-cyanoethyl)-8,9-isopropyl-idenedioxy-7-trityloxymethyl-2,6-dioxa-1-azaspiro[4.4]nonane 18.-The reaction was carried out in the same way as described in the preparation of compound $16[11(90 \mathrm{mg}, 0.2 \mathrm{mmol})$, acrylonitrile ( $239 \mathrm{mg}, 4.5 \mathrm{mmol}$ ), toluene ( $1.5 \mathrm{~cm}^{3}$ ); $120^{\circ} \mathrm{C} ; 14 \mathrm{~h}$; $48 \%$ yield]. Powder (Found: C, 71.7; H, 6.1; N, 7.5. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.9 ; \mathrm{H}, 6.0 ; \mathrm{N}, 7.6 \%) ; m / z(\mathrm{EI}) 551\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}$ $(\mathrm{KBr}) 3050(\mathrm{Ar}, \mathrm{CH}), 2920$ and $2960(\mathrm{CH})$ and $2240(\mathrm{CN}) ; \delta_{\mathrm{H}}$ $1.30-1.33(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 1.50-1.52(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 2.23$ and $2.40(1$ $\left.\mathrm{H} \times 2, \mathrm{~m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.60$ and $2.80\left(1 \mathrm{H} \times 2, \mathrm{~m}, 4-\mathrm{H}_{2}\right), 3.05$ and $3.12\left(1 \mathrm{H} \times 2, \mathrm{~m}, \mathrm{CH}_{2} \mathrm{OTr}\right), 3.18$ and $3.25\left(1 \mathrm{H} \times 2, \mathrm{~m}_{1} 1^{\prime}-\mathrm{H}_{2}\right)$, $4.10-4.70(3 \mathrm{H}, \mathrm{m}, 7-, 8-\mathrm{and} 9-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.20-$ $7.50(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3)$.
(2R,3R,4R,5R,8S)-8-Hydroxy-3,4-isopropylidenedioxy-6-[2'-(methoxycarbonyl)ethyl]-7-oxo-2-trityloxymethyl-1-oxa-6azaspiro[4.4]nonane 19.-A mixture of Raney nickel (ca. 1 g ), compound 16 ( $77 \mathrm{mg}, 0.125 \mathrm{mmol}$ ), and methanol $\left(2 \mathrm{~cm}^{3}\right)$ was refluxed for 2 h . The reaction mixture was filtered through Celite and the filtrate was evaporated to give an oil. Purification by PLC on silica gel [AcOEt-hexane (1:1)] gave compound 19 in $70 \%$ yield: crystals; m.p. $75-77^{\circ} \mathrm{C}$ (Found: C, $69.5 ; \mathrm{H}, 6.4$; N, 2.4. $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{8}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.3 \%$ ); $m / z$ (EI) $587\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3380(\mathrm{OH}), 2960(\mathrm{Ar}, \mathrm{CH}), 2920$ and $2850(\mathrm{CH})$ and 1720 and $1690(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.53(3$ H, s, Me), 2.37 ( $\left.2 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{H}\right), 2.67\left(2 \mathrm{H}, \mathrm{dd}, 1^{\prime}-\mathrm{H}\right), 3.27(2 \mathrm{H}$, dd, $\left.J_{8,9} 3.4, J_{8.9} .8 .0,9-\mathrm{H}_{2}\right), 3.50\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}\right), 3.53(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J_{8,9} 3.4, J_{8,9} \cdot 8.0,8-\mathrm{H}\right), 4.42(1 \mathrm{H}, \mathrm{m}, 2-$ H), $4.70(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.70\left(1 \mathrm{H}, \mathrm{d}, J_{3.4} 7.8,4-\mathrm{H}\right)$ and $7.20-7.52$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3)$.
(2R,3R,4R,5R,8S)-8-Hydroxy-6-(3'-hydroxypropyl)-3,4-isopropylidenedioxy-2-trityloxymethyl-1-oxa-6-azaspiro [4.4]nonane 20.-To a dry THF solution of compound 19 ( 56 mg , $0.095 \mathrm{mmol})$ was added $\mathrm{LiAlH}_{4}(11.4 \mathrm{mg}, 0.3 \mathrm{mmol})$. The colour of solution changed to red gradually. The reaction mixture was refluxed for 3.5 h and then ice-cooled and quenched with water and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$. The resulting solution was filtered through Celite and washed with diethyl ether. Purification by PLC on silica gel [AcOEt-MeOH (9:1)] gave compound 20 as an oil in $40 \%$ yield (Found: $\mathrm{C}, 70.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.5$. $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{7}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.5 \%$ ); m/z (FAB) 560 $(\mathrm{M}+1)^{+} ; \delta_{\mathrm{H}} 1.26$ and $1.31\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 1.60$ and 1.74 $\left(1 \mathrm{H} \times 2, \mathrm{~m}, 2^{\prime}-\mathrm{H}_{2}\right), 1.87\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{gem}} 13.2, J_{1^{\prime}, 2^{\prime}} 7.1, J_{1^{\prime}, 2^{\prime \prime}} 3.3\right.$, $\left.2^{\prime}-\mathrm{H}\right), 2.13\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\text {gem }} 13.2, J_{1^{\prime}, 2^{\prime \prime}} 3.3, J_{1^{\prime \prime}, 2^{\prime \prime}} 6.6,2^{\prime}-\mathrm{H}\right)$, $2.36\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 16.0, J_{8.9} 5.2,9-\mathrm{H}\right), 2.62\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{gem}}$ $\left.16.0, J_{8.9} 3.3,9-\mathrm{H}\right), 3.10(1 \mathrm{H}, \mathrm{br}, 8-\mathrm{OH}), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9}\right.$ $\left.5.2, J_{8.9} 3.3,8-\mathrm{H}\right), 3.24$ and $3.29\left(1^{\mathrm{H}} \times 2, \mathrm{~m}, 3^{\prime}-\mathrm{H}_{2}\right), 3.41$ and $3.44\left(1 \mathrm{H} \times 2, \mathrm{~m}, 7-\mathrm{H}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{OH}\right.$ and $\left.3-\mathrm{H}\right), 3.83$ ( $1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .3 .99\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.3,7{ }_{2.10} 5.5,10-\mathrm{H}_{2}\right), 4.10(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.3, J_{2.10} 5.2,10-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{d}, J_{3.4} 5.0,4-\mathrm{H}\right)$ and $7.21-7.48(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3) ; \delta_{\mathrm{C}} 25.2,27.6,30.2,38.1,54.9$, $61.5,61.8,62.6,65.5,68.6,70.4,77.2,81.5,86.2,108.2,127.0$, 128.7, 143.9 and 144.0.
(3S,5R,7R,8R,9R)-3-Hydroxymethyl-8,9-isopropylidenedioxy-1-[2'-(methoxvcarbonyl)ethyl]-7-trityloxymethyl-2,6-dioxa-1azaspiro[4.4]nonane 21 .-To a stirred solution of compound 16
( $55 \mathrm{mg}, 0.089 \mathrm{mmol}$ ) in dry ethanol was added $\mathrm{NaBH}_{4}(55 \mathrm{mg}$, 1.43 mmol ), divided in 5 portions, during 20 min . When the reaction was almost complete, water $\left(0.5 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was evaporated under reduced pressure and the residue was extracted with diethyl ether. Purification by PLC on silica gel [AcOEt-hexane (1:1)] gave compound 21 as a foam in $58 \%$ yield (Found: C, 69.3; H, 6.8; N, 2.4. $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{8}$ requires $\mathrm{C}, 69.3 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.4 \%$ ) $m / z$ (EI) $589\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}$ $(\mathrm{KBr}) 3450(\mathrm{OH}), 3050(\mathrm{Ar}, \mathrm{CH}), 2975$ and $2920(\mathrm{CH})$ and 1735 $(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.32$ and $1.52\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 2.26\left(1 \mathrm{H}, \mathrm{ddd}, J_{1^{\prime} .2^{\prime}}\right.$ $\left.5.3, J_{1^{\prime \prime}, 2^{\prime}} 7.7, J_{\text {gem }} 15.9,2^{\prime}-\mathrm{H}\right), 2.34\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime}, 2^{\prime \prime}} 4.9, J_{1^{\prime \prime}, 2^{\prime \prime}}$ $\left.6.8, J_{\text {gem }} 15.9,2^{\prime}-\mathrm{H}\right), 2.38\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 12.6, J_{3.4} 8.2,4-\mathrm{H}\right), 2.62(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 12.6, J_{3.4^{\prime}} 8.2,4^{\prime}-\mathrm{H}\right), 3.00\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.10(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 3.16\left(1 \mathrm{H}\right.$, dd, $\left.J_{7.10} 6.7, J_{\text {gem }} 9.8,10-\mathrm{H}\right), 3.21(1 \mathrm{H}$, dd, $\left.J_{7,10^{\prime}} 5.5, J_{\text {gem }} 9.8,10-\mathrm{H}\right), 3.54$ and $3.73\left(1 \mathrm{H} \times 2\right.$, br d, $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$, $364\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.21\left(1 \mathrm{H}, \mathrm{ddd}, J_{3.4}=J_{3.4^{\prime}}=8.2, J_{3.3 \alpha}\right.$ $\left.2.4, J_{3.3 a^{\prime}} 5.1,3-\mathrm{H}\right), 4.30\left(1 \mathrm{H}\right.$, ddd $, J_{7.8} 2.6, J_{7,10} 6.7, J_{7,10^{\prime}} 5.5,7-$ H), $4.53\left(1 \mathrm{H}, \mathrm{d}, J_{8.9} 6.6,9-\mathrm{H}\right), 4.57\left(1 \mathrm{H}, \mathrm{dd}, J_{7,8} 2.6, J_{8,9} 6.6,8-\right.$ H), $7.22-7.45(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3)$; $\delta_{\mathrm{c}} 25.1$ and $26.5\left(\mathrm{CMP}_{2}\right), 33.1$ and $33.3\left(\mathrm{C}-2^{\prime},-4\right), 46.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 51.9(\mathrm{OMe}), 62.3$ and $63.7(\mathrm{C}-$ $\left.1^{\prime},-10\right), 78.8,81.2,83.1$ and $83.9(\mathrm{C}-3,-7,-8,-9), 86.8\left(\mathrm{CPh}_{3}\right)$, $104.8(\mathrm{C}-5), 113.6\left(\mathrm{CMe}_{2}\right), 127.1,127.9$ and $128.6(\mathrm{Ph}), 143.6$ ( Ph -ipso) and 74.5 (CO).
(3S,5R,7R,8R,9R)-3-Hydroxymethyl-1-(3'-hydroxypropyl)-8,9-isopropylidenedioxy-7-trityloxymethyl-2,6-dioxa-1-azaspiro[4.4]nonane 22 .-To a stirred solution of compound $\mathbf{1 6}$ $(66.8 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(12.3 \mathrm{mg}, 0.32 \mathrm{mmol})$. This reaction was complete immediately. Water ( $1 \mathrm{~cm}^{3}$ ) was added to the reaction mixture, which was then filtered through Celite. After evaporation under reduced pressure, the residue was extracted with diethyl ether. Purification by PLC on silica gel [AcOEt-hexane (1:1)] gave diol 22 as a foam in $94 \%$ yield (Found: $\mathrm{C}, 70.6 ; \mathrm{H}$, $6.9 ; \mathrm{N}, 2.6 . \mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{7}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 7.0 ; \mathrm{N}, 2.5 \%$ ); $\mathrm{m} / \mathrm{z}$ (EI) $562\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3350(\mathrm{OH}), 3050(\mathrm{Ar}, \mathrm{CH})$ and $2910(\mathrm{CH}) ; \delta_{\mathrm{H}} 1.33$ and $1.52\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 1.60(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 1.72\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{OH}\right), 1.76(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.31(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {gem }} 12.6, J_{3.4} 6.7,4-\mathrm{H}\right), 2.46\left(1 \mathrm{H}, \mathrm{br}, 3-\mathrm{CH}_{2} \mathrm{OH}\right), 2.74(1 \mathrm{H}$, dd, $\left.J_{\text {gem }} 12.6, J_{3.4} 8.9,4-\mathrm{H}\right), 2.78\left(1 \mathrm{H}\right.$, ddd, $J_{\text {gem }} 13.5, J_{2^{\prime} .3^{\prime}} 5.8$, $\left.J_{2^{\prime}, 3^{\prime}} 7.7,3^{\prime}-\mathrm{H}\right), 2.96\left(1 \mathrm{H}\right.$, ddd, $J_{\text {gem }} 13.5, J_{2^{\prime} .3^{\prime \prime}} 5.5, J_{2^{\prime \prime} .3^{\prime \prime}} 6.1$, $\left.3^{\prime}-\mathrm{H}\right), 3.25\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 0, J_{7,10} 5.5,10-\mathrm{H}_{2}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}\right.$ $\left.12.1, J_{3.3 \alpha} 3.6,3-\mathrm{CH} H \mathrm{OH}\right), 3.67\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {gem }} 12.1, J_{3,3 \alpha^{\prime}} 2.5,3-\mathrm{CHHOH}\right), 4.20\left(1 \mathrm{H}\right.$, ddd, $J_{7,10}=$ $\left.J_{7.10^{\prime}}=5.5, J_{7,8} 3.6,7-\mathrm{H}\right), 4.29(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}$, $\left.J_{8,9} 6.9,9-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{dd}, J_{8,9} 6.9, J_{7,8} 3.6,8-\mathrm{H}\right)$ and $7.22-$ $7.46(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3) ; \delta_{\mathrm{C}} 25.2$ and $26.6\left(\mathrm{CMe}_{2}\right), 30.2$ and 35.4 (C-2', -4), $47.4\left(\mathrm{C}-1^{\prime}\right), 61.7,63.0$ and 63.6 (C-3', $-10,3-$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 77.4,80.9,82.3$ and $82.7(\mathrm{C}-3,-7,-8,-9), 86.9$ $\left(\mathrm{CPh}_{3}\right), 104.3(\mathrm{C}-5), 114.2\left(\mathrm{CMe}_{2}\right), 127.1,127.9$ and $128.7(\mathrm{Ph})$ and 143.7 (Ph-ipso).
(3R,5R)-3-[(1'R, 2'R, $\left.3^{\prime} \mathrm{R}\right)-3^{\prime}$ - Hydroxy $-1^{\prime}, 2^{\prime}$-isopropyl-idenedioxy-3'-trityloxybutyl]-5-methoxycarbonyl-2-[ $\beta$ (methoxycarbonyl)ethyl]isoxazolidine 23 and 23' (3S Form of 23).-To a stirred solution of compound $16(80 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{EtOH}\left(1.5 \mathrm{~cm}^{3}\right)$ containing $\mathrm{AcOH}\left(50 \mathrm{~mm}^{3}\right)$ was added $\mathrm{NaBH}{ }_{3} \mathrm{CN}(128 \mathrm{mg}, 2 \mathrm{mmol})$. After being stirred overnight the reaction mixture was evaporated and the residue was extracted with diethyl ether. Purification by PLC on silica gel [1, AcOEthexane (1:1); 2, benzene-AcOEt (10:1)] gave compound 23 ( $44 \%$, foam) and compound $23^{\prime}$ ( $31 \%$, foam).

Compound 23 (Found: C, 67.8; $\mathrm{H}, 6.7 ; \mathrm{N}, 2.2 . \mathrm{C}_{35} \mathrm{H}_{41} \mathrm{NO}_{9}$ requires $\mathrm{C}, 67.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.3 \%$ ) $m / z(\mathrm{EI}) 620\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr})$ $3275(\mathrm{OH}), 3025$ and $3000(\mathrm{Ar}, \mathrm{CH}), 2950$ and $2910(\mathrm{CH})$ and $1715(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.31$ and $1.32\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 2.55(1 \mathrm{H}$, ddd, $\left.J_{\text {gem }} 13.1, J_{4.5} 8.7, J_{3.4} 7.4,4-\mathrm{H}\right), 2.76\left(2 \mathrm{H}, 2 \beta-\mathrm{H}_{2}\right), 2.90(2 \mathrm{H}$, $4-\mathrm{H}$ and $2 \alpha-\mathrm{H}), 3.17\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{gem}} 12.5, J_{2 \beta .2 \alpha^{\prime}}=J_{2 \alpha^{\prime}, 2 \beta^{\prime}}=6.3$,
$\left.2 x-\mathrm{H}^{\prime}\right), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.8, J_{3^{\prime} .4^{\prime \prime}} 4.8,4^{\prime}-\mathrm{H}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}\right.$ $9.8, J_{3^{\prime}, 4^{\prime}} 2.8,4^{\prime}-\mathrm{H}$ ), 3.48 ( 1 H , ddd, $J_{3.4} 7.2, J_{3.4} 0, J_{1 \cdot 3} 9.9,3-\mathrm{H}$ ), $3.62\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.67$ and $3.76\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.97(1 \mathrm{H}$, dd, $\left.J_{1^{\prime} \cdot 3} 10.0, J_{1} \cdot 2^{\prime} 5.1,1^{\prime}-\mathrm{H}\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime \prime} \cdot 3^{\prime \prime}} 9.8, J_{1^{\prime} \cdot 2^{\prime}} 5.1\right.$, $\left.2^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5}=J_{4 \cdot 5}=8.9,5-\mathrm{H}\right), 4.65(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$ and 7.22-7.52 ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3$ ); $\delta_{\mathrm{c}} 25.6$ and $28.2\left(\mathrm{CMe}_{2}\right), 32.2$ and $33.3(\mathrm{C}-2 \beta,-4), 51.8$ and $52.5(\mathrm{OMe} \times 2), 53.2(\mathrm{C}-2 \alpha), 65.2$ (C-4'), 65.9, 68.0, 75.3, 76.8 and 77.6 (C-3, $\left.-5,-1^{\prime},-2^{\prime},-3^{\prime}\right), 86.4$ $\left(\mathrm{CPh}_{3}\right), 108.8\left(\mathrm{CMe}_{2}\right), 126.8,127.7$ and $128.8(\mathrm{Ph}), 144.2(\mathrm{Ph}-$ $i p s o)$ and 172.4 and $172.9(\mathrm{CO} \times 2)$.

Compound 23 (Found: C, 67.6; H, 6.7; N, 2.2. $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{NO}_{9}$ requires C, $67.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.3 \%$ ); $m / z$ (EI) $620\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}$ $3450(\mathrm{OH}), 3015$ (Ar, CH), 2970, 2925 and $2875(\mathrm{CH})$ and 1730 and $1720(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.23$ and $1.28\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 2.32$ $\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{gem}} 13.3, J_{3.4} 11.4, J_{4,5} 5.6,4-\mathrm{H}\right), 2.70(2 \mathrm{H}, 2 \beta-\mathrm{H}$ and OH ), $2.78\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{gem}} 16.2, J_{2 \beta^{\prime}, 2 \alpha} 8.3, J_{2 \beta^{\prime}, 2 \alpha^{\prime}} 5.9,2 \beta-\mathrm{H}^{\prime}\right), 2.94$ ( 1 H, ddd, $\left.J_{\text {gem }} 13.3, J_{3,4^{\prime \prime}} 13.5, J_{4^{\prime}, 5} 9.0,4^{\prime}-\mathrm{H}\right), 3.08(1 \mathrm{H}$, ddd, $\left.J_{2 \alpha, 28} 5.6, J_{2 \alpha, 2 \alpha^{\prime}} 7.8, J_{\mathrm{gem}} 13.5,2 \alpha-\mathrm{H}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.6, J_{3^{\prime} \cdot 4^{\prime}}\right.$ $\left.7.2,4^{\prime}-\mathrm{H}\right), 3.25(1 \mathrm{H}, 3-\mathrm{H}), 3.36\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{gem}} 13.9, J_{2 \alpha^{\prime} \cdot 2 \beta} 6.5$, $\left.J_{2 \alpha^{\prime}}{ }^{\mathrm{a}^{\prime}} 8.3,2 \alpha-\mathrm{H}^{\prime}\right), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.5, J_{3^{\prime} \cdot 4} 2.9,4^{\prime}-\mathrm{H}\right.$ ), 3.67 and $3.74(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{OMe} \times 2), 3.80\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \cdot 2^{\prime}}\right.$ $\left.9.5, J_{2^{\prime}, 3^{\prime}} 4.8,2^{\prime}-\mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime}} 9.5, J_{1^{\prime}, 3} 4.8,1^{\prime}-\mathrm{H}\right)$, $4.45\left(1 \mathrm{H}, \mathrm{dd}, J_{4} .59 .4, J_{4.5} 5.5,5-\mathrm{H}\right)$ and $7.22-7.47(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}} 25.8$ and $28.0\left(\mathrm{CMe}_{2}\right), 32.9$ and 36.8 (C-2 $\left.\beta,-4\right), 51.6$ and $52.3(\mathrm{OMe} \times 2), 52.9(\mathrm{C}-2 \alpha), 64.8,68.4,74.1,77.6$ and $79.0\left(\mathrm{C}-3,-5,-1^{\prime},-2^{\prime},-3^{\prime}\right), 65.0\left(\mathrm{C}\left(4^{\prime}\right), 87.0\left(\mathrm{CPh}_{3}\right), 108.8\right.$ $\left(\mathrm{CMe}_{2}\right), 127.1,127.9$ and $128.6(\mathrm{Ph}), 143.7(\mathrm{Ph}-\mathrm{ipso})$ and 172.0 and $173.0(\mathrm{CO})$.
(4R,5S,7R,8R,9S,10R)-8,9,10-Tribenzyloxy-7-benzyloxy-methyl-4-methoxycarbonyl-1-[2'-(methoxycarbonyl)ethyl $]-2,6$ -dioxa-1-azaspiro $[4.5]$ decane 25 and ( $3 \mathrm{~S}, 5 \mathrm{R}, 7 \mathrm{R}, 8 \mathrm{R}, 9 \mathrm{~S}, 10 \mathrm{R}$ )-8,9,10-Tribenzyloxy-7-benzyloxymethyl-3-methoxycarbonyl-1-[2'-(methoxycarbonyl)ethyl]-2,6-dioxa-1-azaspiro[4.5]decane 26.-A mixture of compound $24^{9}(110 \mathrm{mg}, 0.2 \mathrm{mmol})$, methyl acrylate ( $0.3 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}$ ), and dry toluene ( $0.3 \mathrm{~cm}^{3}$ ) was heated at $120^{\circ} \mathrm{C}$ in a sealed tube (volume $5 \mathrm{~cm}^{3}$ ) for 14 h . The reaction mixture was evaporated, and the residue was purified by PLC on silica gel [1, AcOEt-hexane (2:3); 2 , MeOH-THF ( $1: 1$ ); 3, benzene-AcOEt ( $10: 1$ ); 4, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ( $60: 1$ )]; compound 25, syrup, $44 \%$ (Found: C, 69.2; H, 6.5; N, 1.9. $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{NO}_{10}$ requires C, $69.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 1.9 \%$ ); m/z (EI) 726 $\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1} 3010(\mathrm{Ar}, \mathrm{CH}), 2980$ and $2940(\mathrm{CH})$ and 1730 (CO); $\delta_{\mathrm{H}} 2.56\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{gem}} 15.9, J_{1^{\prime}, 2^{\prime}}=J_{1^{\prime} \cdot 2^{\prime \prime}}=5.8,1^{\prime}-\mathrm{H}\right)$, 2.63 ( 1 H , ddd, $J_{\text {gem }} 15.9, J_{1^{\prime \prime}, 2^{2}} 5.3, J_{1^{\prime \prime}, 2^{\prime}} 8.2,1^{\prime \prime}-\mathrm{H}$ ), $2.94(1 \mathrm{H}$, ddd, $\left.J_{\text {gem }} 13.6, J_{1^{\prime}, 2^{\prime}} 5.8, J_{1^{\prime \prime}, 2^{\prime}} 5.3,2^{\prime}-\mathrm{H}\right), 3.58\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime}, 2^{\prime}} 5.8$, $\left.J_{1^{\prime \prime}, 2^{\prime \prime}} 8.2,2^{\prime}-\mathrm{H}^{\prime}\right), 3.63$ and $3.68\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me} \times 2\right), 3.64$ $\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{gem}} 11.9, J_{7,11}=J_{7,11^{\prime}}=1.7,11-\mathrm{H}\right), 3.72(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {gem }} 9.9, J_{3,4} 6.7,3-\mathrm{H}\right), 3.79\left(1 \mathrm{H}\right.$, dd, $J_{\text {gem }} 11.9, J_{7.11}=J_{7.11^{\prime}}=$ $\left.1.7,11-\mathrm{H}^{\prime}\right), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J_{7.8}=J_{8.9}=9.3,8-\mathrm{H}\right), 3.96(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{8.9} 9.3, J_{9.10} 10.2,9-\mathrm{H}\right), 4.10\left(1 \mathrm{H}\right.$, ddd, $J_{7.8} 9.3, J_{7.11}=$ $\left.J_{7.11^{\prime}}=1.7,7-\mathrm{H}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 9.9, J_{3^{\prime}, 4} 7.9,3^{\prime}-\mathrm{H}\right), 4.20$ $\left(1 \mathrm{H}, \mathrm{d}, J_{9.10} 10.2,10-\mathrm{H}\right), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 6.7, J_{3^{\prime} .4} 7.9,4-\right.$ $\mathrm{H})$, $4.44-5.05\left(8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph} \times 4\right)$ and $7.22-7.36(20 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph} \times 4$ ); $\mathrm{NOE} 4-\mathrm{CO}_{2} \mathrm{Me} \longleftrightarrow 7-\mathrm{H} ; 1-\mathrm{CO}_{2} \mathrm{Me} \longleftrightarrow 9-\mathrm{H} ; \delta_{\mathrm{C}}$ $33.3\left(\mathrm{C}-1^{\prime}\right), 46.9\left(\mathrm{C}-2^{\prime}\right), 51.0(\mathrm{C}-4), 51.7$ and $52.2\left(\mathrm{CO}_{2} \mathrm{Me} \times 2\right)$, 64.7 and 68.3 (C-3, -11), 72.6, 78.7, 79.0 and 83.0 (C-7, -8, -9, $-10), 73.2,74.9,75.5$ and $76.0\left(\mathrm{OCH}_{2} \mathrm{Ph} \times 4\right), 127.0-128.4$ $(\mathrm{Ph}), 138.2,138.3,138.5$ and 138.8 ( Ph -ipso) and 168.6 and $173.0(\mathrm{CO} \times 2)$.

Compound 26: Syrup, 21\% (Found: C, 69.3; H, 6.5; N, 1.9\%); $m / z(\mathrm{EI}) 726\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1} 3040(\mathrm{Ph}, \mathrm{CH}), 2900$ and $2850(\mathrm{CH})$ and 1735 and $1720(\mathrm{CO}) ; \delta_{\mathrm{H}} 2.55\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 12.7, J_{3.4} 5.8,4-\right.$ H), $2.64\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{gem}} 15.9, J_{1^{\prime} \cdot 2^{\prime}}-J_{1^{\prime}, 2^{\prime \prime}}=5.8,1^{\prime}-\mathrm{H}\right) .2 .78(1 \mathrm{H}$, ddd, $\left.J_{\text {gem }} 15.9, J_{1^{\prime \prime}, 2^{\prime}} 6.8, J_{1^{\prime \prime}, 2^{\prime \prime}} 8.2,1^{\prime}-\mathrm{H}^{\prime}\right), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 12.7\right.$, $\left.J_{3.4^{4}} 8.3,4-\mathrm{H}^{\prime}\right), 3.34-3.38\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 3.42\left(1 \mathrm{H}, \mathrm{ddd}, J_{7.8} 1.4\right.$, $\left.J_{7.11} 10.4, J_{7.11} \cdot 2.8,7-\mathrm{H}\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 24.9, J_{7.11} 10.4,11-\right.$ H), 3.57 ( $\left.1 \mathrm{H}, \mathrm{dd}, J_{8.9} 9.4, J_{9.10} 9.5,9-\mathrm{H}\right), 3.58$ and $3.67(3 \mathrm{H} \times 2$,
$\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me} \times 2\right)$, $3.65\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 24.9, J_{7.11}, 2.8,11-\mathrm{H}^{\prime}\right)$, $3.65\left(1 \mathrm{H}, \mathrm{d}, J_{9.10} 9.5,10-\mathrm{H}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 9.4, J_{7.8} 1.4\right.$, $8-\mathrm{H}), 4.51\left(1 \mathrm{H}\right.$, dd, $\left.J_{3.4} 5.9, J_{3.4} 7.9,3-\mathrm{H}\right), 4.55-4.91(8 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph} \times 4$ ) and $7.18-7.35(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 4)$; NOE 3$\mathrm{H} \longleftrightarrow 4-\mathrm{H} ; 1-\mathrm{CO}_{2} \mathrm{Me} \longleftrightarrow 7-, 8-, 11-\mathrm{H} ; \delta_{\mathrm{C}} 33.2$ and $37.0(\mathrm{C}-$ $\left.2^{\prime},-4\right), 44.9\left(\mathrm{C}-1^{\prime}\right), 51.6$ and $52.2\left(\mathrm{CO}_{2} \mathrm{Me} \times 2\right), 68.6(\mathrm{C}-11)$, 73.4, 75.1, 75.6 and $75.8\left(\mathrm{OCH}_{2} \mathrm{Ph} \times 4\right)$, 73.9, 74.3, 77.4, 79.0 and 84.8 (C-3, -7, -8, -9, -10), $96.0(\mathrm{C}-5), 127.3-128.4$ (Ph), 138.1, 138.4, 138.5 and 138.5 (Ph-ipso) and 171.0 and 173.0 ( $\mathrm{CO} \times 2$ ).
(5S,7R,8R,9R)-8,9-Isopropylidenedioxy-3,4-bis(methoxy-carbonyl)-1-methyl-7-trityloxymethyl-2,6-dioxa-1-azaspiro-[4.4]non-3-ene 28.-To a stirred mixture of compound 16 (91 $\mathrm{mg}, 0.2 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.7 \mathrm{~cm}^{3}\right)$ was added methyl trifluoromethanesulphonate $\left(25 \mathrm{~mm}^{3}, 0.22 \mathrm{mmol}\right)$. The mixture was stirred for an additional 2 h at room temperature and was then treated with DMAD ( $0.18 \mathrm{~cm}^{3}, 2.0 \mathrm{mmol}$ ). After being cooled at $-78^{\circ} \mathrm{C}$, the mixture was treated with triethylamine ( $31 \mathrm{~mm}^{3}, 0.22 \mathrm{mmol}$ ) and was then stirred for 4 h . The resulting mixture was warmed to room temperature and then rotary evaporated. Purification by PLC on silica gel [AcOEt-hexane (1:3)] gave compound $\mathbf{2 8}$ as a foam in $99 \%$ yield (Found: C, 67.9; $\mathrm{H}, 6.0 ; \mathrm{N}, 2.3 . \mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{9}$ requires $\mathrm{C}, 67.9 ; \mathrm{H}, 5.9 ; \mathrm{N}, 2.3 \%$ ); $m / z$ (EI) $601\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3050(\mathrm{Ar}, \mathrm{CH}), 2960,2925,2900$ and $2850(\mathrm{CH})$ and 1755 and $1700(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.33$ and $1.56(3$ $\mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}$ ), $3.07\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.9, J_{7,10} 3.9,10-\mathrm{H}\right), 3.18(3$ $\mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.9, J_{7,10^{\prime}} 8.0,10-\mathrm{H}^{\prime}\right), 3.53$ and $3.92\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.15\left(1 \mathrm{H}, \mathrm{ddd}, J_{7,10} 3.9, J_{7,10}, 8.0\right.$, $\left.J_{7,8} 5.6,7-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{dd}, J_{7.8} 5.6, J_{8.9} 6.0,8-\mathrm{H}\right), 5.06(1 \mathrm{H}, \mathrm{d}$, $\left.J_{8.9} 6.0,9-\mathrm{H}\right)$ and $7.20-7.48(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3) ; \delta_{\mathrm{c}} 24.9$ and 27.0 $\left(\mathrm{CMe}_{2}\right), 37.7(\mathrm{NMe}), 51.6$ and $53.3(\mathrm{OMe} \times 2), 65.0(\mathrm{C}-10)$, 81.6, 84.2 and $84.6(\mathrm{C}-7,-8,-9), 86.6\left(\mathrm{CMe}_{2}\right), 104.3,107.9$ and $114.0\left(\mathrm{C}-4, \mathrm{CPh}_{3}\right), 126.9-128.7(\mathrm{Ph}), 143.8$ ( $\mathrm{Ph}-\mathrm{ipso}$ ) and 153.8, 158.0 and $162.1(\mathrm{C}-3, \mathrm{CO} \times 2)$.
(3R,5S,7R,8R,9R)-8,9-Isopropylidenedioxy-3-methoxy-carbonyl-1-methyl-7-trityloxymethyl-2,6-dioxa-1-azaspiro[4.4]nonane 29.-The reaction was performed at room temperature in the same way as that above, by using methyl acrylate as a 1,3 -dipolarophile. Purification by PLC on silica gel [AcOEt-hexane ( $1: 2$ )] gave compound 29 as the main product in $49 \%$ yield. Two other isomers and a small amount of triphenylmethanol were also isolated.

Compound 29: Foam (Found: C, 70.1; H, 6.6; N, 2.5. $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{7}$ requires C, 70.4; H, 6.5; N, 2.6\%); m/z (EI) 545 $\left(\mathrm{M}^{+}\right) ; v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3030(\mathrm{Ar}, \mathrm{CH}), 2970$ and $2930(\mathrm{CH})$ and 1750 and $1730(\mathrm{CO}) ; \delta_{\mathrm{H}} 1.32$ and $1.53\left(3 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{CMe}_{2}\right), 2.46$ (NMe), $2.58\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 12.8, J_{3.4} 7.3,4-\mathrm{H}\right), 2.97\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}\right.$ $\left.12.8, J_{3,4^{4}} 9.2,4-\mathrm{H}^{\prime}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 9.8, J_{7,10} 7.1,10-\mathrm{H}\right), 3.21$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}} 9.8, J_{7,10^{\circ}} 5.3,10-\mathrm{H}^{\prime}\right), 4.29\left(1 \mathrm{H}, \mathrm{ddd}, J_{7.8} 2.6, J_{7.10}\right.$ $7.1, J_{7.10} .5 .3,7-\mathrm{H}$ ), $3.74\left(3 \mathrm{H}, \mathrm{s}\right.$, OMe), $4.43\left(1 \mathrm{H}, \mathrm{d}, J_{8.9} 6.6,9-\right.$ H), $4.50-4.55(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 8-\mathrm{H})$ and $7.21-7.45(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph} \times 3)$; $\mathrm{NOE} \mathrm{OMe} \longleftrightarrow \mathrm{CMe}_{2} ; \delta_{\mathrm{c}} 25.1$ and $26.5\left(\mathrm{CMe}_{2}\right), 35.1$ (C-4), 38.2 (NMe), 52.4 (OMe), 63.7 (C-10), 72.5, 81.5, 83.6 and $84.2(\mathrm{C}-3,-7,-8,-9), 86.8\left(\mathrm{CMe}_{2}\right), 104.7(\mathrm{C}-5), 113.6\left(\mathrm{CPh}_{3}\right)$, 127.1-128.7 (Ph), 143.6 (Ph-ipso) and $172.3(\mathrm{CO})$.
$X$-Ray Crystal Structure Determination of Compound 17.Crystals were prepared by slow evaporation of an ethanolic solution.

Crystal data. $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}_{7}, \mathrm{M}=585.67$, monoclinic, $a=$ $11.722(1), b=15.789(6), c=8.593(7) \AA, \alpha=90.000(0), \beta=$ 96.385(8), $\gamma=90.000(0)^{\circ}, V=1580.7 \AA^{3}$, space group $P 21 / n$, $Z=2, D_{\mathrm{x}}=1.231 \mathrm{~g} \mathrm{~cm}^{-3}$.

Data collection and processing. An AFC 5 diffractometer was used, in the $\omega / 2 q$ mode with scan speed $4.0^{\circ} \mathrm{min}^{-1}$; graphitemonochromated $\mathrm{Cu}-K x$ radiation was used; 2643 reflections were measured ( $2 \theta$ range $3^{\circ} \leqslant 2 \theta \leqslant 120^{\circ}, \pm h,+k,+l$ ): 2560

Table 2 Fractional atomic co-ordinates for compound

| Atom | $x$ | $y$ | $z$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{~N}(1)$ | 0.3556 | 0.4930 | 0.9048 |
| $\mathrm{O}(2)$ | 0.3779 | 0.5298 | 1.0621 |
| $\mathrm{O}(6)$ | 0.5155 | 0.3990 | 0.9372 |
| $\mathrm{O}(13)$ | 0.5300 | 0.6784 | 0.6682 |
| $\mathrm{O}(16)$ | 0.3964 | 0.4306 | 1.4277 |
| $\mathrm{O}(19)$ | 0.7387 | 0.3331 | 0.9735 |
| $\mathrm{O}(39)$ | 0.2530 | 0.3014 | 0.8049 |
| $\mathrm{O}(40)$ | 0.3984 | 0.2085 | 0.8084 |
| $\mathrm{C}(3)$ | 0.3445 | 0.4672 | 1.1651 |
| $\mathrm{C}(4)$ | 0.3464 | 0.3820 | 1.0795 |
| $\mathrm{C}(5)$ | 0.3917 | 0.4047 | 0.9252 |
| $\mathrm{C}(7)$ | 0.5408 | 0.3131 | 0.8978 |
| $\mathrm{C}(8)$ | 0.4464 | 0.2867 | 0.7685 |
| $\mathrm{C}(9)$ | 0.3502 | 0.3510 | 0.7818 |
| $\mathrm{C}(10)$ | 0.4235 | 0.5452 | 0.8058 |
| $\mathrm{C}(11)$ | 0.3611 | 0.6279 | 0.7694 |
| $\mathrm{C}(12)$ | 0.4287 | 0.6898 | 0.6827 |
| $\mathrm{C}(14)$ | 0.3704 | 0.7711 | 0.6309 |
| $\mathrm{C}(15)$ | 0.4241 | 0.4676 | 1.3190 |
| $\mathrm{C}(17)$ | 0.5467 | 0.5053 | 1.3149 |
| $\mathrm{C}(18)$ | 0.6585 | 0.3095 | 0.8450 |
| $\mathrm{C}(20)$ | 0.8585 | 0.3378 | 0.9449 |
| $\mathrm{C}(21)$ | 0.8817 | 0.4196 | 0.8585 |
| $\mathrm{C}(22)$ | 0.9931 | 0.4351 | 0.8152 |
| $\mathrm{C}(23)$ | 1.0175 | 0.5117 | 0.7466 |
| $\mathrm{C}(24)$ | 0.9328 | 0.5725 | 0.7160 |
| $\mathrm{C}(25)$ | 0.8236 | 0.5582 | 0.7588 |
| $\mathrm{C}(26)$ | 0.7982 | 0.4829 | 0.8289 |
| $\mathrm{C}(27)$ | 0.9251 | 0.3453 | 1.1093 |
| $\mathrm{C}(28)$ | 1.0358 | 0.3148 | 1.1417 |
| $\mathrm{C}(29)$ | 1.0963 | 0.3275 | 1.2872 |
| $\mathrm{C}(30)$ | 1.0467 | 0.3717 | 1.4011 |
| $\mathrm{C}(31)$ | 0.9395 | 0.4029 | 1.3697 |
| $\mathrm{C}(32)$ | 0.8762 | 0.3920 | 1.2249 |
| $\mathrm{C}(33)$ | 0.8875 | 0.2572 | 0.8574 |
| $\mathrm{C}(34)$ | 0.8914 | 0.1807 | 0.9331 |
| $\mathrm{C}(35)$ | 0.9131 | 0.1071 | 0.6961 |
| $\mathrm{C}(36)$ | 0.9069 | 0.1060 | 0.8532 |
| $\mathrm{C}(37)$ | 0.9083 | 0.1831 | 0.6166 |
| $\mathrm{C}(38)$ | 0.8949 | 0.2576 | 0.6977 |
| $\mathrm{C}(41)$ | 0.2785 | 0.2145 | 0.7741 |
| $\mathrm{C}(42)$ | 0.2412 | 0.1926 | 0.6073 |
| $\mathrm{C}(43)$ | 0.2224 | 0.1590 | 0.8870 |
|  |  |  |  |

were given a unique absorption correction (average transmission factor 0.14 ) giving 2392 reflections with $I>2 \sigma(I)$.

Structure analysis and refinement. The structure was solved by the UNICS-III system (Library of Computer Center of Tokyo

University) based on direct methods, and refined to a final $R$ value of 0.0559 ( $R_{\omega} 0.064$ blocked full-matrix least-squares refinement). Hydrogen atoms were located by the difference Fourier method using practical reflection data. Non-H atom coordinates are given in Table 2.*

* Supplementary data (see section 5.6.3 of Instructions for Authors, issue
1). Tables of bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data centre.


## Acknowledgements

We thank Dr. Koreharu Ogata (Analysis Center, Chiba University) for the X-ray analysis.

## References

1 J. Goodchild, in Topics in Antibiotic Chemistry, ed. P. G. Sammes, Ellis Horwood, 1982, vol. 6, p. 198.
2 (a) M. Yokoyama, K. Tsuji and T. Imamoto, Bull. Chem. Soc. Jpn., 1984, 57, 2954; (b) M. Yokoyama, K. Tsuji and M. Kushida, J. Chem. Soc., Perkin Trans. 1, 1986, 67; (c) M. Yokoyama, N. Yamada and H. Togo, Chem. Lett., 1990, 753; (d) Y. A. Maurinsh, K. Sujino, H. Togo and M. Yokoyama, Heterocycles, 1990, 31, 1089; (e) M. Yokoyama, E. Nakao, K. Sujino, S. Watanabe and H. Togo, Heterocycles, 1990, 31, 1669; ( $f$ ) M. Yokoyama, T. Ikuma, N. Obara and H. Togo, J. Chem. Soc., Perkin Trans. 1, 1990, 3243.
3 A. Vasella, Helv. Chim. Acta, 1977, 60, 1273; B. Bernet and A. Vasella, Helv. Chim. Acta, 1979, 62, 1990, 2411 ; A. Vasella and R. Voeffray, J. Chem. Soc, Chem. Commun., 1981, 97; Helv. Chim. Acta, 1982, 65, 1134, 1953; Helv. Chim. Acta, 1983, 66, 1241.
4 M. Yokoyama and N. Yamada, Tetrahedron Lett., 1989, 30, 3675.
5 M. Yokoyama, S. Watanabe and T. Seki, Synthesis, 1988, 879.
6 R. J. Remy and J. A. Secrist III, Nucleosides Nucleotides, 1985, 4, 411; For review, see C. K. Chu and S. J. Cutler, J. Heterocycl. Chem., 1986, 23, 289 and references cited therein.
7 R. Grigg, M. Jordan, A. Tangthongkum, F. W. B. Einstein and T. Jones, J. Chem. Soc., Perkin Trans. 1, 1984, 47; R. Grigg and S. Thianpatanagul, J. Chem. Soc., Perkin Trans. 1, 1984, 653; P. Armstrong, R. Grigg and W. J. Warnock, J. Chem. Soc., Chem. Comтии., 1987, 1325.
8 G. N. Austin, P. D. Baird, G. W. J. Fleet, J. M. Peach, P. W. Smith and D. J. Watkin, Tetrahedron, 1987, 43, 3095.
9 B. M. Aebischer, H. W. Hanssen and A. T. Vasella, J. Chem. Soc., Perkin Trans. 1, 1982, 2139.
10 A. Vasella, Helv. Chim. Acta, 1977, 60, 426.

Paper 1/02291A
Received 15th May 1991
Accepted 8th July 1991

